Valorization of sunflower meal through the production of ethanol from the hemicellulosic fraction

Bruna Tavares¹, Luciane Sene¹ & Divair Christ¹

¹ Universidade Estadual do Oeste do Paraná/Centro de Ciências Exatas e Tecnológicas/Programa de Pós-Graduação Stricto Sensu em Engenharia Agrícola. Cascavel, PR. E-mail: brutavares1986@hotmail.com (Corresponding author); luciane.sene@unioeste.br; divair.christ@unioeste.br

Key words: by-product, biomass, xylose, biofuel, optimization

ABSTRACT
Sunflower is among the major oil seeds crop grown in the world and the by-products generated during the seeds processing represent an attractive source of lignocellulosic biomass for bioprocesses. The conversion of lignocellulosic fibers into fermentable sugars has been considered as a promising alternative to increase the demand for ethanol. The present study aimed to establish the fermentation conditions for ethanol production by Scheffersomyces stipitis ATCC 58376 in sunflower meal hemicellulosic hydrolysate, through a 2³ CCRD (Central Composite Rotational Design) factorial design. Under the selected conditions (pH 5.25, 29 ºC and 198 rpm) the final ethanol concentration was 13.92 g L⁻¹ and the ethanol yield was 0.49 g g⁻¹.

Palavras-chave: subproduto, biomassa, xilose, biocombustível, otimização

Valorização do farelo de girassol através da produção de etanol a partir da fração hemicelulósica

RESUMO
O girassol está entre as principais oleaginosas cultivadas no mundo e os subprodutos gerados durante o processamento das sementes representam uma fonte atraente de biomassa lignocelulósica para bioprocessos. A conversão de fibras lignocelulósicas em açúcares fermentáveis tem sido considerada uma alternativa promissora para aumentar a demanda de etanol. O presente estudo teve, como objetivo, estabelecer as condições de fermentação para a produção de etanol por Scheffersomyces stipitis ATCC 58376 em hidrolisado hemicelulósico de farelo de girassol através de um planejamento fatorial DCCR 2³. Sob as condições selecionadas (pH 5.25, 29 ºC e 198 rpm) a concentração final de etanol foi 13,92 g L⁻¹ e o rendimento 0,49 g g⁻¹.
Materials and Methods

Characterization of sunflower meal (Caramuru Alimentos, Itumbiara-GO, Brazil), dilute acid hydrolysis of the hemicellulosic fraction (6% w v⁻¹ H₂SO₄, 121 °C, 20 min) and hydrolysate detoxification (pH adjustment followed by adsorption with activated charcoal) were performed according to Camargo & Sene (2014a). Recent studies have presented sunflower biomass as a novel source of sugars from cellulose and hemicellulose (Camargo et al., 2014a) and for ethanol production by simultaneous saccharification and fermentation (SSF) (Camargo et al., 2014b). Although there are many studies in the literature on the physiology of S. stipitis and its potential to produce ethanol from xylose, reports on its performance in hemicellulosic hydrolysates derived sunflower by-products are still limited. Thus, the present study aimed at exploring the biotechnological potential of sunflower meal for ethanol production by S. stipitis from the hemicellulosic hydrolysate.

Results and Discussion

Chemical characterization of sunflower meal resulted in the following composition: 32.93% cellulose, 30.90% hemicellulose, 26.62% lignin, 5.05% ash, 27.93% protein and 1.60% lipids. The sunflower meal hemicellulosic hydrolysate presented the following sugar composition: glucose 8.06 g L⁻¹, xylose 49.93 g L⁻¹ and arabinose 8.67 g L⁻¹. Xylose content in sunflower hydrolysate was high, compared to the hemicellulosic hydrolysates obtained from other materials such as sorghum straw, 17.69 g L⁻¹ (Sene et al., 2011), sugar cane bagasse,
The inhibitors concentrations (acetic acid 3.56 g L\(^{-1}\), furfural 0.03 g L\(^{-1}\), HMF 0.03 g L\(^{-1}\) and total phenols 0.89 g L\(^{-1}\)) are within or under the range of values usually found in other sources of hemicellulosic hydrolysates, in general, 1-3.41 g L\(^{-1}\) of acetic acid, 0.04-0.26 g L\(^{-1}\) of furfural, 0.008-1.56 g L\(^{-1}\) of HMF and 2.12-2.23 g L\(^{-1}\) of total phenols (Mussatto & Roberto, 2004; Canilha et al., 2005; Marton et al., 2006; Villarreal et al., 2006; Sene et al., 2011).

After detoxification, the sugar composition in the hydrolysate was 45.56 g L\(^{-1}\) of xylose, 7.4 g L\(^{-1}\) of glucose, 7.82 g L\(^{-1}\) of arabinose, with a slight reduction of sugars (8-10%). Acetic acid concentration was reduced by 58% reaching the value of 1.5 g L\(^{-1}\). Total phenols, furfural and HMF were not detected in the detoxified hydrolysate. It has been reported that fermentations of steam exploded wheat straw by \(S.\) \(P.\) \(C.\) and \(P.\) \(C.\) were completely inhibited by a synergistic effect due to the presence of 1.5 g L\(^{-1}\) of acetic acid, 0.15 g L\(^{-1}\) of furfural and 0.05 g L\(^{-1}\) of HMF (Bellido et al., 2011), the same acetic acid concentration found in this work after detoxification. However, the development of a \(P.\) \(C.\) more tolerant to acetic acid and other inhibitory components present in acid hydrolysates is possible through a simple adaptation of cells (Nigam, 2001).

Xylose consumption was strongly influenced by the different conditions employed. The highest xylose consumption was observed in the condition 14 (pH 5, 30 °C and 234 rpm), which was very similar to the xylose consumption at the central point triplicates - treatments 15, 16 and 17 (pH 5, 30 °C and 150 rpm). No xylose assimilation was observed in the conditions 11 (pH 5, 22 °C, 150 rpm) and 12 (pH 5, 38 °C, 150 rpm). Results suggest that the furthest temperature values had strong negative influence on the consumption of xylose. Arabinose concentrations remained unaltered in most of the tests (data not shown), similar to an observation related in a previous work carried out with \(S.\) \(C.\) grown in sunflower meal hemicellulosic hydrolysate (Camargo & Sene, 2014).

Growth profile seemed to be directly affected by pH, temperature and agitation and their combinations. In general, high growth was related to high agitation (≥ 150rpm) (data not shown). By comparing the growth profile in the conditions 6 (pH 5.5, 25 °C, 200 rpm) and 5 (4.5, 25 °C, 200 rpm). Similarly to that observed for xylose, the condition 12 (pH 5, 38 °C, 150 rpm) had strong negative influence on the consumption of glucose. Arabinose concentrations remained unaltered in most of the tests (data not shown), similar to an observation related in a previous work carried out with \(S.\) \(C.\) grown in sunflower meal hemicellulosic hydrolysate (Camargo & Sene, 2014).

Glucose uptake was faster in the conditions 6 (pH 5.5, 25 °C, 200 rpm) and 5 (4.5, 25 °C, 200 rpm). Similarly to that observed for xylose, the condition 12 (pH 5, 38 °C, 150 rpm) had strong negative influence on the consumption of glucose.

At the fermentation time of 48 h, there was no interaction between variables, while at 24, 72 and 84 h there was interaction between all variables with coefficient of determination of 0.82, 0.82 and 0.77, respectively and p-value less than 0.05. According to the analysis model for the fermentations at times of 24, 72 and 84 h, the F-value calculated was respectively 1.6, 1.47 and 1.27 times the F-tabulated value. In general, as there was a strong interaction between the linear and quadratic variables at 24 and 72 h and reduction of the interactions at 84 h, data of 24 and 72 h were used to construct the response surface graphs (Figure 2).
Valorization of sunflower meal through the production of ethanol from the hemicellulosic fraction

Figure 1. Pareto charts for estimation of the effects of pH, temperature and agitation on the response ethanol production after 24, 48, 72 and 84 h

Figure 2A and 2D show the quadratic effect of pH and agitation on the response ethanol production at 24 and 72 h, respectively, in which it is evident that the greatest contribution to ethanol production occurred at the intermediate levels of pH and agitation. A higher ethanol production was also observed at the intermediate levels of temperature and agitation (Figure 2B and 2E) as well as at intermediate levels of temperature and pH (Figures 2C and 2F). Thus, by evaluating all the data together, it was possible to conclude that the production of ethanol was favored at pH values near 5, agitation between 180-200 rpm and temperature near 30 °C.

A model is considered adequate and close to the optimization when it presents itself as quadratic model. Adequate models were obtained at 72 h, when the variables showed the greatest influences on ethanol production. Based on the results obtained after the completion of the design (2^3 CCRD), all responses were optimized simultaneously, considering the desirable values for each one. By the interpolation of the results obtained at 72 h, it was possible to verify that the optimal conditions corresponded to pH of 5.25, temperature of 29.0 °C and agitation of 198 rpm. The fermentations carried out in triplicate at the optimized conditions (Figure 3) led to a final ethanol concentration of 13.92 g L^{-1}, which corresponded to an ethanol yield of 0.49 g g^{-1} and an efficiency of 96% compared to the theoretical yield. At this condition, ethanol production increased by 4.38% and volumetric ethanol productivity increased by 4.65% compared to the treatment 14.

Although the favorable conditions for the ethanol production by S. stipitis ATCC 58376 in sunflower biomass...
Figure 2. Surface response graphs (pH x agitation, temperature x agitation and pH x temperature) for ethanol production after 24 (ABC) and 72 h (DEF).

Figure 3. Kinetic profiles of fermentation performed at the optimized conditions.

Hemicellulosic hydrolysate have been clearly evidenced, the low cell concentration (1 g L\(^{-1}\)) initially used as inoculum may have been responsible for the low productivity. High cell-density fermentation can improve the productivity of final products and shorten fermentation time (Liu, 2012). High cell density of *Saccharomyces cerevisiae* strains was proven to provide effective fermentation at high sugar concentrations while mitigating some inhibitory effects of softwood hydrolysates (Kapu et al., 2013).

Conclusions

1. The use of pre-adapted cells to the hydrolysate as inoculum along with the optimization of conditions through experimental design, demonstrated that the sunflower meal
hemicellulosic hydrolysate is feasible for ethanol production by *Pichia stipitis* ATCC.

2. The sunflower meal hemicellulose hydrolysate presented the advantage of having high sugar concentration, which eliminates the need for a concentration step, resulting in savings in the process of ethanol production, a fuel of great importance for the Brazilian economy.

Acknowledgements

The authors thank the Coordination for the Improvement of Higher Education Personnel - CAPES for the scholarship granted to Bruna Tavares.

Literature Cited

